
IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 44

Digit Recognizer

Anushri Ravikumar
1
, Ashitha Nayak

2
, Mamatha

3

Information Science and Engineering, BMS College of Engineering, Bangalore, India12

 Assistant Professor, Information Science and Engineering, BMS College of Engineering, Bangalore, India3

Abstract: The human visual system is one of the wonders of the world. The difficulty of visual pattern recognition

becomes apparent if you attempt to write a computer program to recognize digits. One of the approaches to computers

behaving and computing like humans involve neural networks. The neural network automatically infers rules for

recognizing handwritten digits. This approach reduces human intervention in many commercial places like banks to
process cheques and by post offices to recognize addresses. The neural network attempts to determine if the input data

matches a pattern that the neural network has memorized. The concepts of weights and biases are conventionally used

to enhance the performance of the Neural networks over a large set of test images and classify the digit into a class

label. The data is stored in a very simple file format designed for storing vectors and multidimensional matrices. Tensor

Flow is used to train an elaborate model that achieves state-of-the-art performance along with Softmax Regression. The

current program can recognize digits with an accuracy over 96 percent, without human intervention, classifying 9,979

of 10,000 images correctly. The performance is close to human-equivalent, and is arguably better, since quite a few of

the MNIST images are difficult even for humans to recognize with confidence.

Keywords: Neural network; TensorFlow; Softwax Regression; Pattern recognition.

INTRODUCTION

Pattern recognition is one of the most common use of

neural networks. The neural network is provided with a

target vector for identification and another vector which

contains the pattern information. This could be an image

or hand written data. The model will attempt to memorise

patterns during training and then try to determine if the

input data matches them. When a neural network is being

designed for such a purpose, it must be trained to classify

the input samples into groups. These groups may not have
clearly defined boundaries and therefore be fuzzy. With

the large number of the hand-written documents, there is a

great demand to convert the handwritten documents into

digital record copies, which are more accessible through

digital systems, such as digital forms and databases. To

accomplish the transformation of handwritten numbers to

their respective digital version automatically, multi-digit

recognition techniques are extremely useful and necessary.

The purpose of this paper is to take handwritten digit

characters as input, process the character, train the neural

network algorithm, to recognize the pattern and modify the
character to a beautified version of the input.

Objectives:

 To design a neural network using a mathematical

model for the required outcome and for the process of

normalization and enhancing efficiency.

 To adopt multiple layers while designing the

computational model of CNN for digit classification.

 This paper is aimed at development of software that

can be used in applications which require recognition of

digits. This paper is restricted to English digit only. It can

be developed further to recognize the digits of different

languages.

 It aims to engulf the concepts of machine learning,

neural networks and data mining to meet the required

outcome.

 This paper presents a convolutional neural network

for digit recognition. The system works for images

uploaded with handwritten digits in them. It is limited to

grayscale images of size 784 pixels, but it can also be
extended to nearly double the size with suitable changes.

 Currently the system recognizes one digit at a time. It

can be upgraded to recognize multiple digits in the future.

LITERATURE SURVEY

Works in character recognition

Research attempts began in the area of character

recognition as early as 1959 by Grimsdale. An approach

known as analysis-by-synthesis originated in the early

sixties on which a great amount of research was based.

This method was suggested by Eden in 1968. Eden's work
proved that a finite number of schematic features form all

handwritten characters. This point made it highly

important for further works. It was later used in all

methods in syntactic approaches of character recognition.

Analytical Review of Pre-processing Techniques [5] is

another source of information for various techniques that

can be used to pre-process images. It concerns different

kind of images ranging from a simple handwritten form

based documents to those containing coloured and

complex backgrounds which have different intensities.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 45

For recognizing unconstrained texts that are handwritten, a

proposed model was the Hybrid Hidden Markov Model [6].

In this model, the structural parts of text are modeled using

Markov chains. A multilayer perceptron is used to

estimate the emission probabilities. The slope and slant

from handwritten text are removed using various

techniques. The size of text images are normalized with

supervised learning methods. The key features of this

recognition system were to develop a system having high

accuracy in pre-processing and recognition, which are
both based on ANNs.

A modified quadratic classifier is the Hand Written

Numeral Recognition of six scripts [7]. It is based on a

scheme to recognize the handwritten numerals of six

popular Indian scripts. This paper has been a great success

to adopt neural network for highly used local languages in

India. The project uses this paper as an inspiration and

reference for the work done.

Multilayer perceptron [8] is a feed forward ANN that has

been used for recognizing English characters that are
handwritten. Boundary tracing is for extraction of features

and their Fourier Descriptors. The shape of the character is

analyzed and the features that distinguish it are compared

for recognition.

The paper on Diagonal based feature extraction [9],

proposes a diagonal feature extraction for offline character

recognition. This gives a high recognition accuracy of 97.8

% for 54 features and 98.5% for 69 features.

Offline Handwriting Recognition [10] describes a system
for recognition of cursive handwriting. It is based on

Hidden Markov Models using discrete and hybrid

modeling techniques.

Devanagiri Character Recognition [12], used four feature

extraction techniques namely, intersection, shadow

feature, chain code histogram and straight line fitting

features. For each character image, there is a global

computation of shadow features. The character image is

divided into different segments and computed for chain

code histogram features, intersection features and line

fitting features. The overall recognition rate for a data set
of 4900 units was observed to be 92.80% on

experimentation for Devanagari characters.

Recognizing Arabic characters [13] et al, describes that

recognition of characters greatly depends upon the features

used. Many features of the Arabic characters that are

handwritten are discussed. An off-line recognition system

based on the selected features was built. Realistic samples

of handwritten Arabic characters are used for training and

testing. The importance and accuracy of the selected

features is evaluated. Based on selected features, average
accuracies of 88% and 70% are obtained for the numbers

and letters, respectively.

DESIGN

System Design

The following figure (Figure 1) provides a high level

design of the system and the association between various

modules used.

Figure 1 High level Design

Data flow diagrams

The DFD’s have been shown below.

DFD Level-0

The DFD Level-0 consists of two external entities, the UI

and the Output, along with a process block 1.0,

representing the CNN for Digit Recognition as shown

(figure 2). Output is obtained after processing.

Figure 2 DFD level-0

DFD Level-1

The DFD Level-1 (figure 3) consists of 2 external entities,

the GUI and the Output, along with five process blocks

and 2 data stores MNIST data and Input image store,

representing the internal workings of the CNN for Digit

Recognition System. Process block 1.3 imports MNIST

data from data store online. Process block 1.1 imports the

image and processes it and sends it to block 1.2 where

regression model is built. It sends objects with

probabilities to CNN where weights are updated and

multiple layers are built. Block 1.5 trains and evaluates the
model to generate output.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 46

Figure 3 DFD level-1

DFD Level-2

The DFD Level-2 for import data (figure 4) consists of

two external data store and one entity UI along with three

process blocks, representing the three functionalities of the

CNN for Digit Recognition System. It imports data from

MNIST data store and stores on the System.

Figure 4 DFD level-2

DFD Level-2(regression model)

The DFD Level-2 for regression model (figure 5) consist

of a MNIST data store and 4 process block. Block 1.2.1
creates placeholders for inputs. Variables are created and

initialized (block 1.2.2) weights are assigned to variables

(block 1.2.3) and regression model is built (block 1.2.4).

Figure 5 DFD level-2(regression model)

DFD Level-2(Build CNN)
The DFD Level-2 for build CNN (figure 6) consists of an

external entity Regression Model along with 7 process

blocks, weights are initialized (block 1.4.1) and passed to

convolution layer and pooling layers (block 1.4.2) Then

layers of CNN are built (blocks 1.4.3,1.4.4,1.4.5) and

dropout (block 1.4.6) and then final readout is obtained

(block 1.4.7).

Figure 6 DFD level-2 (Build CNN)

DFD Level-2(Train and Evaluate model)

The DFD Level-2 for (Train and Evaluate Model) (figure
7) consists of an external entity CNN along with 4 process

blocks, cross entropy (block 1.5.1) and optimization

(block 1.5.2) is done on the results obtained from CNN

block. Labels are predicted using aggregation function

(block 1.5.3) and accuracy is determined (block 1.5.4)

Results are stored in results data store.

Figure 7 DFD level-2 (Train and Evaluate Model)

Detailed Design of the functional Modules

Functional description of each module is explained:

Pre-processing

Pre-processing may be required for pre-captured photo

sequences. The dimensions are matched and made sure

that each image contains only one digit. We use MNIST

data sets for training, recognition of handwritten digits.

MNIST is a simple computer vision dataset. It (figure 8)

consists of images like these:

Figure 8 Data set example images

The MNIST Data

The data set being used is hosted on Yann LeCun's

website. It can be imported using the following code:

fromtensorflow.examples.tutorials.mnist import

input_data

mnist = input_data.read_data_sets("MNIST_data/",

one_hot=True)

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 47

The downloaded data is split into three parts, 55,000 data

points of training data (mnist.train), 10,000 points of test

data (mnist.test), and 5,000 points of validation data

(mnist.validation). Every MNIST data point has two parts:

an image of a handwritten digit and a corresponding label.

We will call the images "xs" and the labels "ys". All

divisions of the data set must contain these labels.Each

image is 28 pixels by 28 pixels. This is interpreted as a big

array of numbers (figure 9):

Figure 9 Matrix representation of pixels

This array can be flattened into a vector of size 28 pixels *

28 pixels = 784. The method or procedure used for

flattening does not have any particular constraints other

than that it must be used consistently for images. In this

way, the images in the data set are visualized as a set of

points in a 784-dimensional vector space, a very rich
structure (computationally intensive visualizations). The

result of this process is that the data set now becomes a

structure known as a tensor. It will now have a shape of

[55000, 784]. The x-coordinate is an index of the images

in the data set and the y-coordinate is an index of the each

pixel in an image. Each entered value in the tensor is the

pixel intensity of that particular index(figure 10).

Figure 10 MNIST training data as a tensor

The labels for identifying images in the data set are

numbers between 0 and 9.They are used to describe the

digit that the image represents. For the purposes of this

paper, we're going to encode our labels as "one-hot

vectors". A one-hot vector is a vector which is 1 at a single
index and 0 in all others. In this case, the nth digit will be

represented as a vector which is 1 in the nth dimensions.

Figure 11 Encoding of lables

For example, 3 would be [0,0,0,1,0,0,0,0,0,0].

Consequently, mnist.train.labels is a [55000, 10] array of

floats (figure 11).

Softmax regressions

We know that every image in the data set is a digit

between 0 to 9.We want to be able to look at an image and

give probabilities for it being each digit. For example, our

model might look at a picture of a nine and be 80% sure

it's a nine, but give a 5% chance to it being an eight
(because of the top loop) and a bit of probability to all the

others because it isn't sure.

This is a classic case where a softmax regression is a

natural, simple model, to assign probabilities to an object

being one of several different things. The best method is to

use softmax. Even later on, when we train more

sophisticated models, the final step will be a layer of

softmax.

A softmax regression has two steps: we first need to find

the evidence of our input being in certain classes to add

up, and then we convert that evidence into probabilities.

To tally up the evidence, that a given image is in a
particular class, we do a weighted sum of the pixel

intensities. The weight is negative if that pixel having a

high intensity is evidence against the image being in that

class, and positive if it is evidence in favor.

The following diagram (figure 12) shows the weights one

model learned for each of these classes. The negative

weights and positive weights are represented by red and

blue respectively.

Figure 12 Weights for model

The model also adds some extra evidence called a bias.

This is to consider factors that are more likely independent

of the input. The result is that the evidence for a

class i given an input x is:

evidencei=∑jWi, jxj + bi

where Wi is the weights and bi is the bias for class i,

and j is an index for summing over the pixels in our input

image x. We then convert the evidence tallies into our

predicted probabilities y using the "softmax" function:

y=softmax(evidence)

Here softmax is serving as an "activation" or "link"
function, shaping the output of our linear function into the

form we want -- in this case, a probability distribution over

10 cases. It basically involves the converting tallies of

evidence into probabilities of our input being in each class.

It's defined as:

softmax(x)=normalize(exp(x))

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 48

 But understanding softmax the first way is more

helpful: a process of exponentiating its inputs and then

normalizing them. This means that the weight given to any

hypothesis increases multiplicatively with just one more

unit of evidence. Conversely, a hypothesis gets a fraction

of its earlier weight if it has one less unit of evidence. No

hypothesis ever has zero or negative weight.

 These weights are then normalized, so that they add up

to one, forming a valid probability distribution. Our

softmax regression looks like the following (figure 13),
although with a lot more xs. A weighted sum of the xs,

addition of a bias, and then application of softmax is done

for every image.

Figure 13 Graph of softmax regression function

If we write that out as equations, we get (figure 14):

Figure 14 Matrix representation of the function

The procedure can be "vectorized", turning it into a matrix

multiplication and vector addition as follows(figure 15).

This is helpful for computational efficiency.

Figure 15 Vector representation of the function

More compactly, we can just write:

y=softmax(Wx+b)

IMPLEMENTATION

Implementing the Regression

Tensor Flow needs to be imported using the below code:

importtensorflow as tf

x = tf.placeholder(tf.float32, [None, 784])
 Here, x isn't a specific value. x is a placeholder, we

will input the value when we need to run a computation.

This is because any number of input images must be

accepted and each flattened into a 784-dimensional vector.

A structure [None, 784] is used to represent this as a 2-D

tensor of floating-point numbers. (Here None means that a

dimension can be of any length.)

 Weights and biases are also needed for our model. It

could be treated these like additional inputs, but Tensor

Flow has an even better way to handle it: Variable.

A Variable is a modifiable tensor that lives in

TensorFlow's graph of interacting operations. The model

parameters are generally Variables in machine learning

applications.

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

 But we initialize both W and b as tensors full of zeros
by giving tf.Variable the initial value of the Variable.

Since the model learns W and b, it doesn't matter very

much what they initially are.

 Notice that W has a shape of [784, 10] because we

want to multiply the 784-dimensional image vectors by it

to produce 10-dimensional vectors of evidence for the

difference classes. b can be added to output since it has a

shape of [10].

y = tf.nn.softmax(tf.matmul(x, W) + b)

 First, multiply x by W with the

expression tf.matmul(x, W). This is flipped from when it
multiplied them in our equation, where we had Wx, as a

small trick to deal with x being a 2D tensor with multiple

inputs. Then add b, and finally apply tf.nn.softmax.It only

took one line to define our model, after a couple short

lines of setup. A softmax regression is not made

particularly easy by Tensor Flow: it's just a very flexible

way to describe many kinds of numerical computations,

from machine learning models to physics simulations.

Training the model

In order to train the model, defining what it means for the

model to be good is needed. But, we typically define what

it means for a model to be bad in machine learning, called

the cost or loss, and then try to minimize how bad it is. But

the two are equivalent.

One very common, very nice cost function is "cross-
entropy." Surprisingly, cross-entropy arises from thinking

about information compressing codes in information

theory but it winds up being an important idea in lots of

areas, from gambling to machine learning.

The cross-entropy is measuring how inefficient our

predictions are for describing the truth. To implement

cross-entropy we need to first add a new placeholder to

input the correct answers:

y_ = tf.placeholder(tf.float32, [None, 10])

Then we can implement the cross-entropy,

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ *

tf.log(y), reduction_indices=[1]))

 First, the logarithm of each element is computed by

, tf.log. Next, multiply each element of y_ with the

corresponding element of tf.log(y). Then tf.reduce_sum

adds the elements in the second dimension of y, due to

the reduction_indices [1] parameter.

 Finally, The mean over all examples in the batch is

computed by tf.reduce_mean. Since the entire graph of

our computations is known, it can automatically use

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 49

the algorithm to efficiently determine how your variables

affect the cost we ask it to minimize. Then it can apply our

choice of optimization algorithm to modify the variables

and reduce the cost.

train_step =

tf.train.GradientDescentOptimizer(0.5).minimize(cross

_entropy)

 In this case, it is common to ask Tensor Flow to

minimize cross_entropy using the gradient descent
algorithm with a learning rate of 0.5. Tensor Flow simply

shifts each variable a little bit in the direction that reduces

the cost using a simple procedure - Gradient descent.

Tensor Flow can provide many other optimization

algorithms by just tweaking one line.

 Now the model is set up to train. One last thing before

we launch it, it adds an operation to initialize the variables

we created:

init = tf.initialize_all_variables()

 It is now possible to now launch the model in
a Session, and run the operation that initializes the

variables:

sess = tf.Session()

sess.run(init)

fori in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:

batch_ys})

Each step of the loop gets a "batch" of one hundred

random data points from our training set. It is needed to
run train_step feeding in the batches data to replace

the placeholders. Stochastic training involves the usage of

small batches of data. In this case, stochastic gradient

descent. Ideally, it is likely to use all our data for every

step of training because that would give us a better sense

of what we should be doing, but that's expensive. So,

instead, here it uses a different subset every time. Doing

this is just as beneficial and also cheaper.

RESULTS

Results are shown in figure 16, figure 17 and figure 18.

Figure 16 Result after encoding few images of data set

Figure 17 Result of softmax regression model

Figure 18 Result of CNN

Analysis of Experimental Results

Evaluation metric :

 In TensorFlow, tf.argmax is an extremely useful

function which gives us the index of the highest entry in a

tensor along some axis. For example, tf.argmax(y,1) is the

label our model thinks is most likely for each input, while

tf.argmax(y_,1) is the correct label. We can use tf.equalto

check if our prediction matches the truth. To determine

what fraction are correct, we cast to floating point

numbers and then take the mean.

accuracy = tf.reduce_mean(tf.cast(correct_prediction,

tf.float32))

 print(sess.run(accuracy,feed_dict={x:mnist.tes

t.images, y_: mnist.test.labels}))

We use the following function to compute the accuracy on

our test data. This should be around 92%.Getting 92%

accuracy on MNIST is not very good. The approach we

have is a convolutional neural network. To evaluate it we

will use a code that is nearly identical to that for the
simple one layer SoftMax network above.

The differences are that:

Replace the steepest gradient descent optimizer with the

more sophisticated ADAM optimizer.

Include the additional parameter keep_prob in feed_dict to

control the dropout rate.

Add logging to every 100th iteration in the training

process.

This will get us to around 99.2% accuracy, not state of the

art, but respectable.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education
Vol. 4, Special Issue 8, May 2017

Copyright to IARJSET IARJSET 50

Inference from the result

The SoftMax regression algorithm which uses a trivial

modeling provides an accuracy of about 92%, which is

considerably inefficient given that it uses a highly efficient

algorithm. This led us to the usage of Convolutional

Neural Network along with the regression method

mentioned earlier to attain a higher accuracy.

The final result of over 99% is an indicator of the power

of a neural network to think and compute based on what it

has been trained for. The necessity of this problem of digit
classification is realized when combining it with other

algorithms to form a part of solving a higher end problem.

CONCLUSION

The concepts of Neural Networks, machine learning and

data mining are being implemented in almost all problems

faced by technologists and programmers around the world.

The idea is to train a computer to think and make decisions

like a human being. The concepts used in this paper helps

us to understand the essential requirements to build a

Convolutional Neural network. The layers in the network
harness the usage of weights, biases, pooling, etc. The

model provides an accuracy of over 99% using the

mathematical regression alone thus enabling it to be used

in other problems. This optimal digit classifier has

excellent accuracy, which is not remarkable, because

unlike other high performance classifiers it does not

include prior knowledge about the problem. In fact, this

classifier would do just as well if the image pixels were

permuted with a fixed mapping. It is still slower due to the

memory hungry nature of the large dataset. When plenty

of data is available, many methods can attain acceptable
accuracy. Although the neural-nets methods require

considerable training time, trained networks run faster and

require much less space than memory based techniques.

The nets’ advantage will be more striking as training

databases continue to increase in size.

FUTURE WORK

While this paper exploits the manipulation of the various

parameters, some features may affect the optimal

classification of objects more than others. As part of our

future enhancements, we aim to find these features and
optimize them so as to find the most accurate solution for

classification.

Furthermore, it would be worthwhile to run this system for

multi -digit recognition and character recognition. Most

likely, this would aid in complete handling of occlusion

and would lead to improved detection and classification

results. Data storage should be as efficient as possible, in

spite of having a large number of training samples.

REFERENCES

[1] Hayder M. Albeahdili, Haider A Alwzwazy, Naz E. Islam, “Robust

convolutional neural networks for image recognition”, (IJACSA),

pp 10-21, Volume 6, Issue 11, 2015.

[2] Sherif Abdel Azeem, Maha E1 Meseery, Hany Ahmed, “Online

Arabic Handwritten digits recognition”, Frontiers in handwriting

recognition (ICFHR), pp. 25-67, 2012.

[3] Liu, C.L. “Handwritten digit recognition: Benchmarking of State-

of-the-art techniques”, Pattern recognition 365, (IJACSA), pp 2271-

2285, 2003.

[4] LeCun, Y. et al” Comparison of learning algorithms for handwritten

digit recognition”, International conference on Artificial Neural

networks, France, pp. 53–60, 1995

[5] K. Gaurav and Bhatia P. K., “Analytical Review of Preprocessing

Techniques for Offline Handwritten Character Recognition”,

2
nd

International Conference on Emerging Trends in Engineering &

Management, ICETEM, pp. 346-368, 2013.

[6] Salvador España-Boquera, Maria J. C. B., Jorge G. M. and

Francisco Z. M., “Improving Offline Handwritten Text Recognition

with Hybrid HMM/ANN Models”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13, pp.1024-1035, Vol. 33, No.

4, April 2011.

[7] U. Pal, T. Wakabayashi and F. Kimura, “Handwritten numeral

recognition of six popular scripts,” Ninth International conference

on Document Analysis and Recognition ICDAR 07, Vol.2, pp.749-

753, 2007.

[8] Anita Pal &Dayashankar Singh, “Handwritten English Character

Recognition Using Neural,” Network International Journal of

Computer Science & Communication. Vol. 1, No. 2, pp. 141-144,

July-December 2010.

[9] J. Pradeep, E. Srinivasan and S. Himavathi, “Diagonal Based

Feature Extraction For Handwritten Alphabets Recognition System

Using Neural Network”, International Journal of Computer Science

& Information Technology (IJCSIT), Vol 3, pp.326-339, No 1, Feb 2011.

[10] A. Brakensiek, J. Rottland, A. Kosmala and J. Rigoll, “Offline

Handwriting Recognition using various Hybrid Modeling

Techniques & Character N-Grams”, Available at

http://irs.ub.rug.nl/dbi/4357a84695495.

[11] Reena Bajaj, LipikaDey, and S. Chaudhury, “Devnagari numeral

recognition by combining decision of multiple connectionist

classifiers”, (IJCSIT), Vol.27, part. 1, pp. 59-72, 2002.

[12] Sandhya Arora, “Combining Multiple Feature Extraction

Techniques for Handwritten Devnagari Character Recognition”,

IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, pp.

376-398, December 2008.

[13] Mohammed Z. Khedher, Gheith A. Abandah, and Ahmed M. Al-

Khawaldeh, “Optimizing Feature Selection for Recognizing

Handwritten Arabic Characters”, proceedings of World Academy

of Science Engineering and Technology, vol. 4, February 2005

ISSN 1307-6884.

[14] SushreeSangita Patnaik and Anup Kumar Panda, “Particle Swarm

Optimization and Bacterial Foraging Optimization Techniques for

Optimal Current Harmonic Mitigation by Employing Active Power

Filter Applied Computational Intelligence and Soft Computing”,

Volume 2012, Article ID 897127.

[15] T.Som, SumitSaha, "Handwritten Character Recognition Using

Fuzzy Membership Function", International Journal of Emerging

Technologies in Sciences and Engineering, Vol.5, No.2, pp. 11-15,

Dec 2011.

[16] G. Pirlo and D. Impedovo, “Fuzzy Zoning Based Classification for

Handwritten Characters”, IEEE Transaction on pattern Recognition

and Machine Intelligence, vol.19, no. 04, pp.780-785, August 2011.

[17] Nafiz Arica, and Fatos T. Yarman-Vural, ―Optical Character

Recognition for Cursive Handwriting,ǁ IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol.24, no.6, pp. 801-

113, June 2002.

[18] M. Hanmandlu, O.V. Ramana Murthy, “Fuzzy model based

recognition of handwritten numerals”, pattern recognition, vol.40,

pp.1840-1854, 2007.

[19] Renata F.P.Neves,Alberto N. G. Lopes Filho, Carlos A.B.Mello,

CleberZanchettin, “A SVM Based Off-Line Handwritten Digit

Recognizer”, International conference on Systems, Man and

Cybernetics, IEEE Xplore, pp. 510-515, 9-12 Oct, 2011, Brazil

[20] Yoshimasa Kimura, "Feature Selection for Character Recognition

Using Genetic Algorithm", Fourth International Conference on

Innovative Computing, Information and Control 978-0-7695-3873-

0/09© 2009 IEEE, 2009.

